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Abstract
Liquid is represented as a complicated system of disclinations according to
a defect description of liquids and glasses. The expressions for the linear
disclination field of arbitrary form and the energy of the inter-disclination
interaction are derived in the framework of the gauge theory of defects. This
allows us to describe liquid as a disordered system of topological moments
and reduce this model to the Edwards–Anderson model with long-range
interaction. Within the framework of this approach, vitrification is represented
as a ‘hierarchical’ phase transition. The suggested model allows us to explain
the process of Fischer cluster formation and the slow dynamics in supercooled
liquids close to the liquid–glass transition point.

1. Introduction

Fischer clusters are long-range correlations of density fluctuations, which are observed in
supercooled liquids (∼100 K above the glass transition temperature Tg) [1]. To date, these
clusters have been discovered in polymeric fluids, glass-forming (vitreous) melts and single
fluids. The typical size of these formations is ∼100–300 nm, whereas the correlation radius
of usual short-range thermal density fluctuations is ∼1 nm. The fractal-like structure and
long lifetime are important typical properties of the Fischer clusters [2]. There are theoretical
works in which the formation of these clusters is supposed to be a process of condensation
of atom groups with a common type of local atomic ordering [2, 3]. However, in the case of
dense liquids (at low temperatures), these models encounter complications in the definition of
the order parameter. Besides this, the approach does not allow us to explain the roots of the
fractal-like structure of these formations. Therefore the nature of the Fischer clusters is not
quite clear yet.

In the present work a theoretical model of the glass transition based on the known
approaches of disordered systems physics is offered. Our model is based on the disclination
model of amorphous structures suggested by Nelson. At the beginning we write down the
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system Lagrangian and derive the expressions for the linear disclination field and energy of the
inter-disclination elastic interaction (section 2). After that we define the topological moment
of the disclination system and describe liquid as a disordered system of interacting topological
moments. This allows us to represent the liquid–glass transition in terms of spin-glass systems
physics, and use the spin-glass theory to estimate the size of the long-range correlations in
supercooled liquids (section 3).

2. The disclination description of liquids

The disclination description of liquids suggested by Nelson is the basis of our model. The basic
thesis of this is that a regular tetrahedron represents the closest and most profitable local atomic
packing. Indeed, it has been demonstrated that the structure of atomic liquids and glasses has a
significant polytetrahedral character [4], first due to the success of the close random packing of
hard spheres [5] as a model for metallic glasses and later due to computer simulations [6]. In the
framework of this polytetrahedral model the liquid structure is considered to be a tessellation of
all space with tetrahedra with atoms at their vertices. However, it is known that Euclidean space
cannot be paved only with regular tetrahedra. With mathematical rigour, it was demonstrated
that this was possible only in the case of a four-hypersphere space [7]. Nelson demonstrated
that in order to transform a hypersphere into a flat space, it was necessary to introduce linear
defects (such as disclinations and dislocations) into the structure [8]. Thus, the system of linear
defects is an integral element of the polytetrahedral structure, and, owing to the topological
stability, disclinations can be considered as a basic structural element of the liquid structure.
Hence, we can represent the liquid structure as a disclination system.

In order to describe the disclination system,we use the gauge theory of defects [9]. To write
down the Lagrangian of the defect system, let us make use of the standard theory of elasticity.
The simplest Lagrangian describing a system with elastic deformations has the form

L0 = 1
2ρ0∂4χi∂4χi − 1

8

[
λuααuββ + 2µuαβuαβ

]
,

where χi(r̄ , t) is the elastic strain field, λ and µ are the Lamé constants, ρ0 is the mass den-
sity (which is considered to be constant for simplicity), and ui j are the relative deformation
components:

uab = Cab − δab = ∂aχ
i∂bχ

i − δab

(Greek letters α, β, . . . are used to denote the space component set {α} = {1, 2, 3} and
Roman letters a, b, . . . are used to denote the full index set, including the time component
X4{a} = {1, 2, 3, 4}.)

According to the gauge theory of dislocations and disclinations, the plastic deformation
of the matter structure can be considered as a breakdown of the homogeneity of the rotation
and translation (SO(3) � T (3)) group action. In order to take into account these homogeneity
breakdowns, the compensating fields are introduced into the Lagrangian (Aα

a and ϕi
b), and the

transition from ordinary to covariant derivatives is effected:

∂aχ
i → Bi

a = ∂aχ
i + γ i

α j Aα
aχ j + ϕi

a,

where γ i
α j are three generating matrices of the semisimple group SO(3). After that, the

Lagrangian L0 is replaced by the new Lagrangian

L = L0 + s1 L1 + s2 L2,

where s1 and s2 are free parameters of the theory, and the first term describes elastic properties
of matter:

L0 = 1
2ρ0 Bi

4 Bi
4 − 1

8

[
λEαα Eββ + 2µEαβ Eαβ

]
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(where Eab = Bia Bib − δab is the strain tensor). The second term,

s1 L1 = − 1
2 s1 Di

abkackbd Di
cd,

describes the dislocations; the following notation is used here:

Di
ab = ∂aϕ

i
b − ∂bϕ

i
a + γ i

α j

(
Aα

aϕ
j
b − Aα

b ϕ j
a + Fα

abχ
j
)

(
Fα

ab = ∂a Aα
b − ∂b Aα

a + Cα
βγ Aβ

a Aγ

b

);
in the general case Cα

βγ are constants of the structure of the semisimple group SO(3)

(Cα
βγ = εα

βγ ). The third term,

s2 L2 = − 1
2 s2Cαβ Fα

abgacgbd Fβ

cd (gαβ = −δαβ, g44 = 1/ζ ), (1)

describes disclinations. The Yang–Mills fields, Aα
a , and ϕi

a describe disclinations and
dislocations respectively.

Usually it is supposed that the disclinations are the most important structural elements
in the description of amorphous matter, since they have the largest energy density s2 � s1,
and govern two fundamental properties of glasses: the absence of long-range ordering and the
resistance to crystallization. It is natural to suppose that disclinations are also fundamental
structure elements in liquids; therefore hereinafter we will focus only on the case of breakdown
of homogeneity of the rotation semi-group (monoid). In other words, we will neglect the ϕi

a
field contribution to the action and restrict ourselves to the consideration of the theory with a
purely disclination Lagrangian,

L = L0 − s2 L2.

In the case of linear disclination, the difficulties concerning nonlinearity of the Yang–
Mills fields can be avoided. The field of the disclination line element differs from the point
disclination field, since in this case the rotational displacements corresponding to the gauge
transforms can be performed only around the tangent to the defect line vector, directed along
this element (wedge disclination), and, consequently, the gauge group reduces to SO(2).
Therefore, the theory becomes much simpler, since the rotation group SO(2) is Abelian
instead of being the non-Abelian group SO(3) (in the work [10] this fact was used in the
case of infinite rectilinear defects). In order to find the field of linear disclinations, let us
introduce the tensorial fields Gα

k and Pα
k , which take the following forms:

Gα
k ≡ Fα

k4 = ∂k Aα
4 , Pα

k ≡ 1
2εklm Fα

lm = 1
2 εklm

[
∂l Aα

m − ∂m Aα
l

] ;
then the energy functional of the ‘free’ disclination field (1) can take the form

L2 = 1
4

∫
(d3x)Fα

i j Fα
i j = 1

2

∫
(d3x)

[
(Pα

k − Gα
k )(Pα

k − Gα
k )
]

+
∫

(d3x)Pα
k Gα

k .

Minimizing this part of the Lagrangian we can get the quasi-stationary expression for the
potential of the gauge field of the wedge disclination fragment dlα:

Aα
4 = xα

(
C

r3 + 2C1

)
dlα, Aα

k = εαk j x j

(
C

r3 + C1

)
dlα,

where C and C1 are arbitrary constants. It should be noted that in this expression there is no
summing with respect to α and C1 = 0 because Aα

k (∞) = 0.
Let us consider the two basic examples:

(1) First we find the field of the infinite rectilinear disclination, directed along the axis iα.
For that we introduce the normal to the axis iα vector R j , which determines the point
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location with respect to the disclination. Then the expression for the field of the rectilinear
disclination, directed along the axis z, can be written in the form

Az
i = Cεzi j

∫ ∞

−∞
x j

r3 dlz = Cεαi j

∫ ∞

−∞
R j

(
R2 + lz

2
)3/2 dlz = 2Cεzi j

R j

R2 .

Due to the condition � = 2πν = ∮
Az

i dli , where � is the Frank vector, and ν is the Frank
index, we get an expression which agrees with the result of [10].

(2) The field of the element of the round (with the radius equal to a) disclination loop has the
form

Aα
i = ν

2
εαi j

x j

r3 dlα = νa

2
ni

1

r3 dlα,

where ni is the unit vector normal to the loop’s plane.

If we consider only the low-angle disclinations, ν ∼ 0.2, which are typical for liquid-like
structure, the stress field around the disclination line has the form

σai = µEai = µ
(
Baj B ji − δai

) = µ
[
εαal xl Aα

i + εαil xl Aα
a + ∂i ua + ∂aui

]
.

Hence, the volumetric density of the elastic interaction energy of disclinations, described by
the fields A and A′, has the form

F = 1

2
σai Eai � µ

2
εαal xl Aα

i εγ a j x
′
j A′γ

i + O(a4).

One can see that the form of this interaction is similar to the form of the electrodynamic
interaction of currents. For example, the elastic interaction energy of two round loops � and
�′ with the radius a, remote from 	r , has the form

F � ni n
′
i

π2µa2νν ′

4

∮

�

∮

�′

1

r
dl j dl ′j . (2)

This expression agrees with the expression for the interaction energy of current loops on
condition that 	n ‖ 	n′.

3. Description of the glass transition

The basic idea of our approach was first suggested by Rivier [11]. According to his theory the
glass transition can be considered as a phase transition in the system of topological defects.
In this theory there is no distinction in principle between the spin-and structure-disordered
systems. In both the first and second cases the problem of description of the system is reduced
to the description of the system of interacting disclinations. We would like to make use of this
analogy and reduce this description to that of the disordered spin systems as much as possible,
and apply the methods known from spin-glass physics to our system.

Computer simulation results testify that the disclination system is a tangled net of
interacting disclinations. To describe this system, let us make use of an approach which is
well known in classical electrodynamics [12]: we associate the system of linear disclinations,
included in some small volume such that the numbers of positive and negative disclinations
entering this volume are equal, with their general topological moment (the analogue of the
magnetic moment of the electric currents system). Thus, the total elastic energy of interaction
between all the elements of the disclination network can be represented as the interaction energy
of the system of local topological moments. Since the disclination loop is the simplest structure
element having a topological moment, to simplify the model let us imagine the disclination
network as a system of randomly located and randomly directed disclination loops.
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Let us determine the topology moment vector S̄i in our system as the magnetic moment
is determined in electrodynamics. In this case the Hamiltonian that describes the disclination
loop system can be represented in the form of a Heisenberg model Hamiltonian:

H = 1
2

∑

i, j

Ji j 	Si 	Sj ,

with the inter-spin coupling (from (2))

J lk
i j ≈ µπ4a6νiν j

cos( � 	Si 	Sj )

2|	ri j |3
(

δlk − 3
r l

i jr
k
i j

r2
i j

)

,

where l and k are the indices of the space coordinates of the vector r̄i j . The modulus and sign of
the disclination loop coupling both depend on their situation and their mutual orientation. This
system is frustrated. Indeed, from the last expression one can see that the moment coupling
is an alternating quantity; hence, with equal probability these moments can interact in either a
ferromagnetic-like or an antiferromagnetic-like manner (〈Ji j〉 = 0). This character of coupling
is typical for spin glasses [13]. Therefore, we attempt to describe the system considered using
the modification of the Edwards–Anderson model with large but finite-range interaction which
was analysed in [13, 14]. According to this analysis, the glass transition in such systems is
a so-called ‘hierarchical’ phase transition, which is a hierarchy of successive transitions that
closes at the glass transition point Tg. Using the results of [14] and the expression for the
defect coupling energy obtained above, one can estimate the transition points Ti for every i th
step of this series, as well as the correlation lengths corresponding to these points: Ti can be
estimated from

ln

[
Ti − Tg

Tg

]
≈
[
− p

q − 1
(q1+i − 1)

]
ln Z0, (3)

where q = 32/15, p = 4/15 [14]; the coordination number, Z0, can be evaluated from the
coupling radius R:

Z0 = 4
3 cπ R3,

where c is disclination density, and R can by determined from the inter-disclination interaction
energy and the thermal fluctuation energy parity condition:

E(A) = µa6π4ν2

2R3
≈ 3kT

2
, (4)

where a is a typical interatomic distance. If we express R using (4) and substitute this
expression in (3) we find that the freezing process begins at a temperature which can be
estimated from solving the equation

T0 ≈ Tg
[
1 + Z−4/15

0

] = Tg



1 +

[
4µcπ5a6ν2

9kT0

]−4/15


 . (5)

Subsequent cooling results in the formation of clusters which finally have shape at the
temperature

T1 ≈ Tg
[
1 + Z−0.84

0

]
.

The correlation length characterizing the average size of these clusters as well as their average
lifetime can be determined from

ξ ≈
(

Z 2q
0

4c

)1/3

, τ ≈ τ0 Z 14/5
0 . (6)
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For quantitative estimation of these parameters let us assume typical values: a = 1 × 10−9 m;
k = 1.38 × 10−23 J K−1, Tg = 200 K; τ0 ≈ 10−10 s; the estimation of the disclination density
follows from the analysis of the experimental data (the typical inter-disclination distance is
∼5a): c = 1.4 × 1024 m−3; and the shear modulus of liquids is µ ≈ 1010 N m−2, according
to [15]. As a result, after substitution of these parameters in (5) and (6), we get the following
estimates: T0 − Tg ≈ 100 K; T1 − Tg ≈ 20 K; ξ ≈ 300 nm; τ ∼ 0.4 × 10−6 s. Of course,
these estimates are rather approximate as yet. But we hope that they can be improved in the
future.

4. Conclusions

The structure frustrations and complicated cooperative character of atoms moving in liquids
lead to the necessity of using state-of-the-art methods of statistical physics to understand the
nature of the properties. In this paper we have tried to combine the gauge field theory and
Anderson localization theory to describe the structure formation processes in supercooled
liquids.

The above estimates allow us to conclude that the process of freezing of the degree of
freedom begins at temperatures that are significantly above the glass transition temperature,
Tg, and that correlations with size ∼100 nm form in the temperature range (T − Tg) ∼ 100 K
in the structure of the liquid. The disclination model allows us to explain the density beating
in a natural way, since the atom density is larger close to a negative (ν > 0) disclination
core and smaller close to a positive (ν < 0) one. Therefore, we think that these correlations
conform with the long-range density correlations (Fischer clusters) which are observed in the
experiments.

Acknowledgments

This study was supported by an RFBR grant (04-03-96020-r2004ural) and a grant from FSP
‘Integracia’ (B0086/2121).

References

[1] Fischer E W 1993 Light scattering and dielectric studies on glass forming liquids Physica A 201 183
[2] Bakai A S 2002 Long-range density fluctuations in the glass-forming liquids J. Non-Cryst. Solids 307–310 623
[3] Tanaka H 2000 General view of a liquid–liquid phase transition Phys. Rev. E 62 6968
[4] Nelson D R and Spaepen F 1989 Polytetrahedral order in condensed matter Solid State Phys. 42 1
[5] Bernal J D 1960 Geometry of the structure of monatomic liquids Nature 185 68
[6] Jonsson H and Andersen H C 1988 Icosahedral ordering in the Lennard-Jones liquid and glass Phys. Rev. Lett.

60 2295
[7] Coxeter H S M 1973 Regular Polytopes (New York: Dover)
[8] Nelson D R 1983 Liquids and glasses in spaces of incommensurate curvature Phys. Rev. Lett. 50 982
[9] Kadich A and Edelen D G B 1983 A Gauge Theory of Dislocations and Disclinations (Berlin: Springer)

[10] Osipov V A 1992 Aharonov–Bohm effect in planar systems with disclination vortices Phys. Lett. A 164 327
[11] Rivier N and Duffy D M 1981 Line defects and the glass transition Numerical Methods in the Study of

Critical Phenomena: Proc. Colloq. (Carry-le Rouet, France, June, 1980) ed J Della Dora, J Demongeot and
B Lacolle (Berlin: Springer) pp 132–42

[12] Tamm I E 1989 Foundation of the Electricity (Moscow: Nauka) p 504 (ISBN 5-02-014244-1) (in Russian)
[13] Dotsenco V S, Feigel’man M V and Ioffe L B 1990 Spin glasses and related problems Sov. Sci. Rev. A. Phys.

15 1
[14] Ioffe L B and Feigel’man M V 1985 Hierarchical structure of the Edwards–Anderson spin glass Sov. Phys.—JETP

62 376
[15] Frencel Y I 1945 Kinetic Theory of Liquid (Moscow: AS USSR) p 424 (in Russian)


